phospholipids

New insights in hemp chemical composition: a comprehensive polar lipidome characterization by combining solid phase enrichment, high-resolution mass spectrometry, and cheminformatics

The chemical composition of Cannabis sativa L. has been extensively investigated for several years; nevertheless, a detailed lipidome characterization is completely lacking in the literature. To achieve this goal, an extraction and enrichment procedure was developed for the characterization of phospholipids and sulfolipids. Firstly, a study on the solid-liquid extraction was performed, to maximize the recovery of the considered lipids; the best procedure consisted of a simple extraction with a mixture of methanol and chloroform (1:1, v/v).

Phospholipidome of extra virgin olive oil: Development of a solid phase extraction protocol followed by liquid chromatography–high resolution mass spectrometry for its software-assisted identification

The determination of phospholipids in olive oil is challenging due to their low concentration. For this reason, a comparison of two solid phase extraction procedures, namely weak anionic exchange (WAX) and graphitized carbon black (GCB), is presented for the enrichment of phospholipids. Analyses were performed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and lipids were identified by Lipostar software. Compared to the WAX solid phase extraction, GCB demonstrated the best performance and provided 82 identified phospholipids vs only 32.

Fungal lipids.Biosynthesis and signalling during plant-pathogen interaction

Lipids occur in fungi as major constituents of the membrane systems and minor component in the cell wall; they can store energy in the lipid bodies and, in some cases, they can act as intra-extracellular signals. Fungi contain a various set of lipids, including fatty acids, oxylipins, sphingolipids, phospholipids, glycolipids, and sterols. Current studies in lipids suggest their additional role in cell signalling; for instance, host-pathogen exchange lipid signals at the interface during their interaction.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma