phosphoproteomics

Saliva as a source of new phosphopeptide biomarkers: development of a comprehensive analytical method based on shotgun peptidomics

The paper describes the development of an enrichment method for the analysis of the endogenous phosphopeptides in saliva. The method was based on magnetic solid phase extraction by a magnetic graphitized carbon black-TiO2 composite material and was developed considering different saliva pre-treatments, namely C18 solid phase extraction for purification, direct dilution in loading buffer or acetonitrile precipitation. The method was based on a shotgun proteomics workflow and the enriched peptide mixture was analysed by nanoHPLC and high resolution tandem mass spectrometry.

Development of an enrichment method for endogenous phosphopeptide characterization in human serum

The work describes the development of an enrichment method for the analysis of endogenous phosphopeptides in serum. Endogenous peptides can play significant biological roles, and some of them could be exploited as future biomarkers. In this context, blood is one of the most useful biofluids for screening, but a systematic investigation of the endogenous peptides, especially phosphorylated ones, is still lacking, mainly due to the lack of suitable analytical methods.

New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples

The work describes the preparation of a new magnetic phase for batch enrichment of phosphopeptides. The material exploits the advantages of magnetic solid phase extraction and couples them with the most employed approach for phosphopeptide enrichment, i.e. Ti4+-IMAC. In order to immobilize Ti4+ ions on the surface of the magnetite nanoparticles, they were first covered by a silica shell and then modified to expose at the surface bromine containing groups.

Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment

Magnetic materials in sample preparation for shotgun phosphoproteomics offer several advantages over conventional systems, as the enrichment can be achieved directly in solution, but they still suffer from some drawbacks, due to limited stability and selectivity, which is supposed to be affected by the hydrophilicity of the polymeric supports used for cation immobilization. The paper describes the development of an improved magnetic material with increased stability, thanks to a two-step covering of the magnetic core, for the enrichment of phosphopeptides in biological samples.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma