Resolution and the binary encoding of combinatorial principles
Res(s) is an extension of Resolution working on s-DNFs. We prove tight nΩ(k) lower bounds for the size of refutations of the binary version of the k-Clique Principle in Res(o(log log n)). Our result improves that of Lauria, Pudlák et al. [27] who proved the lower bound for Res(1), i.e. Resolution. The exact complexity of the (unary) k-Clique Principle in Resolution is unknown. To prove the lower bound we do not use any form of the Switching Lemma [35], instead we apply a recursive argument specific for binary encodings.