Geometric phase diffractive waveplate singularity arrays
A general geometric phase singularity array structure is presented and discussed. For any two-dimensional point lattice, a singularity array is defined as a summation of helical phase singularities with alternating handedness. The phase angle is the slow-axis orientation of a varying half-waveplate. Arrays are demonstrated in photoaligned polymer liquid crystal films. Simple square and biomimetic spiral lattices are characterized for diffraction behavior. Pattern selection rules based on topological charge are discovered.