polythiophene

Polymer-supported electron transfer of PQQ-dependent glucose dehydrogenase at carbon nanotubes modified by electropolymerized polythiophene copolymers

The establishment of a polythiophene-supported electron transfer of PQQ-dependent glucose dehydrogenase (PQQ-GDH) at multiwalled carbon nanotubes is reported. For this purpose, thiol-functionalized MWCNTs are deposited on a gold electrode, which is further modified by on-top electropolymerization of different thiophene monomers. The enzyme is covalently bound to such an electrode by activating the carboxy groups of the polymer.

Aqueous polythiophene electrosynthesis. A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications

In this study, polythiophene copolymers have been used as modifier for electrode surfaces in order to allow the immobilization of active pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and to simultaneously improve the direct electrical connection of the enzyme with the electrode. Polymer films are electrosynthesized in aqueous solution without the need of surfactants onto carbon nanotubes modified gold electrodes from mixtures of 3-thiopheneacetic acid (ThCH2CO2H) and 3-methoxythiophene (ThOCH3) using a potentiostatic pulse method.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma