pose estimation

'Seeing is believing': pedestrian trajectory forecasting using visual frustum of attention

In this paper we show the importance of the head pose estimation in the task of trajectory forecasting. This cue, when produced by an oracle and injected in a novel socially-based energy minimization approach, allows to get state-of-the-art performances on four different forecasting benchmarks, without relying on additional information such as expected destination and desired speed, which are supposed to be know beforehand for most of the current forecasting techniques.

MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma