process design

CFD model of agitated vessel for the removal of Cr(VI) by nano-hematite particles

The mixing operation and design of agitated vessels for various chemical engineering applications may still represent a challenge due to the complexity of hydrodynamic fields established inside the reaction system. Computational Fluid Dynamics (CFD) is considered a valuable tool for the investigation of the complex turbulent flow field proper of mechanically agitated vessel (MAV). The use of CFD may effectively support the process engineer for the selection of the most proper impeller/vessel geometry and operative conditions to achieve homogeneous and fully turbulent conditions.

On the effect of specific boundary flux parameters on membrane process design

The boundary flux concept permits to describe the fouling behaviour of membrane systems as a function of the operating time. The method relies on a set of equations that is possible to integrate in time, thus permitting to evaluate the separation process outcome and performances. This study focuses on the relationship between the membrane area requirements and specific parameters of the boundary flux concept on different membrane systems characterized by different waste feed streams and operating conditions.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma