protein binding

Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases

Novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became pandemic by the end of March 2020. In contrast to the 2002–2003 SARS-CoV outbreak, which had a higher pathogenicity and lead to higher mortality rates, SARSCoV-2 infection appears to be much more contagious. Moreover, many SARS-CoV-2 infected patients are reported to develop low-titer neutralizing antibody and usually suffer prolonged illness, suggesting a more effective SARS-CoV-2 immune surveillance evasion than SARS-CoV.

Unveiling the molecular basis of the noonan syndrome-causing mutation T42A of SHP2

Noonan syndrome (NS) is a genetic disorder caused by the hyperactivation of the RAS-MAPK molecular pathway. About 50% of NS cases are caused by mutations affecting the SHP2 protein, a multi-domain phosphatase with a fundamental role in the regulation of the RAS-MAPK pathway. Most NS-causing mutations influence the stability of the inactive form of SHP2. However, one NS-causing mutation, namely T42A, occurs in the binding pocket of the N-SH2 domain of the protein.

Apixaban interacts with haemoglobin: effects on its plasma levels

The direct oral anticoagulant apixaban (APX), a strong factor Xa inhibitor, binds also to plasma proteins, especially albumin, and minimally to α 1 -acid glycoprotein. Although APX can cross the red cell membrane, due to its chemical structure, and could bind to haemoglobin (Hb), no investigation was performed on this possible phenomenon that could affect the APX plasma concentration and thus its pharmacokinetics and pharmacodynamics.

HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome

Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency–centro-meric instability–facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b.

Crystal structure of the Eg5 - K858 complex and implications for structure-based design of thiadiazole-containing inhibitors

The thiadiazole scaffold is an important core moiety in a variety of clinical drug candidates targeting a range of diseases. For example, the 2,4,5-substituted 1,3,4-thiadiazole scaffold is present in a lead compound and at least two clinical candidates targeting the human motor protein Eg5, against neoplastic diseases.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma