proteome

Understanding intramolecular crosstalk in an intrinsically disordered protein

The interaction between NTAIL and XD from the measles virus represents a paradigmatic example of molecular recognition between an intrinsically disordered protein and a folded partner. By binding to XD, a small portion of NTAIL (classically denoted as MoRE) undergoes a disorder-to-order transition, populating an α-helical structure, while the reminder of the protein remains disordered. Here, we demonstrate an unexpected crosstalk between such a disordered region and the adjacent molecular recognition element (MoRE).

Binding induced folding: Lessons from the kinetics of interaction between NTAIL and XD

Intrinsically Disordered Proteins (IDPs) are a class of protein that exert their function despite lacking a well-defined three-dimensional structure, which is sometimes achieved only upon binding to their natural ligands. This feature implies the folding of IDPs to be generally coupled with a binding event, representing an interesting challenge for kinetic studies. In this review, we recapitulate some of the most important findings of IDPs binding-induced folding mechanisms obtained by analyzing their binding kinetics.

Altered mitochondrial function in cells carrying a premutation or unmethylated full mutation of the FMR1 gene

Fragile X-related disorders are due to a dynamic mutation of the CGG repeat at the 5′ UTR of the FMR1 gene, coding for the RNA-binding protein FMRP. As the CGG sequence expands from premutation (PM, 56-200 CGGs) to full mutation (> 200 CGGs), FMRP synthesis decreases until it is practically abolished in fragile X syndrome (FXS) patients, mainly due to FMR1 methylation. Cells from rare individuals with no intellectual disability and carriers of an unmethylated full mutation (UFM) produce slightly elevated levels of FMR1-mRNA and relatively low levels of FMRP, like in PM carriers.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma