Q-learning

LOOP: Iterative learning for optimistic planning on robots

Efficient robotic behaviors require robustness and adaptation to dynamic changes of the environment, whose characteristics rapidly vary during robot operation. To generate effective robot action policies, planning and learning techniques have shown the most promising results. However, if considered individually, they present different limitations. Planning techniques lack generalization among similar states and require experts to define behavioral routines at different levels of abstraction.

Energy and quality aware multi-UAV flight path design through Q-learning algorithms

We address the problem of devising an optimized energy aware flight plan for multiple Unmanned Aerial Vehicles (UAVs) mounted Base Stations (BS) within heterogeneous networks. The chosen approach makes use of Q-learning algorithms, through the definition of a reward related to relevant quality and battery consumption metrics, providing also service overlapping avoidance between UAVs, that is two or more UAVs serving the same cluster area.

Q-SQUARE: A Q-learning approach to provide a QoE aware UAV flight path in cellular networks

This paper deals with the adoption of Unmanned Aerial Vehicles (UAVs) as mobile Base Stations providing video streaming services within a cellular macro area. We devise a Q-learning based UAV flight planning algorithm aimed at improving the Quality of Experience (QoE) of video users. Specifically, the proposed algorithm, herein denoted as Q-SQUARE, leverages the well-established Q-learning algorithm by introducing a reward related to a key QoE metric that is the video segment delay.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma