quantum cascade laser

Control of Electron-State Coupling in Asymmetric Ge/Si−Ge Quantum Wells

Theoretical predictions indicate that the n-type Ge/Si-Ge multi-quantum-well system is the most promising material for the realization of a Si-compatible THz quantum cascade laser operating at room temperature. To advance in this direction, we study, both experimentally and theoretically, asymmetric coupled multi-quantum-well samples based on this material system, that can be considered as the basic building block of a cascade architecture.

Terahertz absorption-saturation and emission from electron-doped germanium quantum wells

We study radiative relaxation at terahertz frequencies in n-type Ge/SiGe quantum wells, optically pumped with a terahertz free electron laser. Two wells coupled through a tunneling barrier are designed to operate as a three-level laser system with non-equilibrium population generated by optical pumping around the 1→3 intersubband transition at 10 THz. The non-equilibrium subband population dynamics are studied by absorption-saturation measurements and compared to a numerical model.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma