First encounters on combs
We consider two random walkers embedded in a finite, two-dimension comb and we study the mean first-encounter time (MFET) evidencing (mainly numerically) different scalings with the linear size of the underlying network according to the initial position of the walkers. If one of the two players is not allowed to move, then the first-encounter problem can be recast into a first-passage problem (MFPT) for which we also obtain exact results for different initial configurations.