rare events searches

Study of rare nuclear processes with CUORE

TeO2bolometers have been used for many years to search for neutrinoless double beta decay in130Te. CUORE, a tonne-scale TeO2detector array, recently published the most sensitive limit on the half-life, > 1.5 × 1025yr, which corresponds to an upper bound of 140-400 meV on the effective Majorana mass of the neutrino. While it makes CUORE a world-leading experiment looking for neutrinoless double beta decay, it is not the only study that CUORE will contribute to in the field of nuclear and particle physics.

Status of the CALDER project: Cryogenic light detectors for background suppression

The development of large area cryogenic light detectors is one of the priorities of next generation bolometric experiments searching for neutrinoless double beta decay. The simultaneous read-out of the heat and light signals enables particle identification, provided that the energy resolution and the light collection are sufficiently high. CALDER (Cryogenic wide-Area Light Detectors with Excellent Resolution) is developing phonon-mediated silicon light detectors using KIDs, with the goal of sensing an area of 5 × 5 cm2 with a resolution of 20 eV RMS.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma