TEMPERED RELAXATION EQUATION AND RELATED GENERALIZED STABLE PROCESSES
Fractional relaxation equations, as well as relaxation functions time-changed by independent stochastic processes have been widely studied (see, for example, MAI, STAW and GAR). We start here by proving that the upper-incomplete Gamma function satisfies the tempered-relaxation equation (of index ρ∈(0,1)); thanks to this explicit form of the solution, we can then derive its spectral distribution, which extends the stable law.