rules

TBox-Driven Rule Learning in Large Knowledge Bases

We present RARL, an approach to discover rules of the form body ⇒ head in large knowledge bases (KBs) that typically include a set of terminological facts (TBox) and a set of TBox-compliant assertional facts (ABox). RARL’s main intuition is to learn rules by leveraging TBox-information and the semantic relatedness between the predicate(s) in the atoms of the body and the predicate in the head. RARL uses an efficient relatedness-driven TBox traversal algorithm, which given an input rule head, generates the set of most semantically related candidate rule bodies.

Neural correlates of strategy switching in the macaque orbital prefrontal cortex

We can adapt flexibly to environment changes and search for the most appropriate rule to a context. The orbital prefrontal cortex (PFo) has been associated with decision making, rule generation and maintenance, and more generally has been considered important for behavioral flexibility. To better understand the neural mechanisms underlying the flexible behavior, we studied the ability to generate a switching signal in monkey PFo when a strategy is changed.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma