S. cerevisiae

Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae

Sterols are essential lipids, involved in many biological processes. In Saccharomyces cerevisiae, the enzymes of the ergosterol biosynthetic pathway (Erg proteins) are localized in different cellular compartments. With the aim of studying organelle interactions, we discovered that Erg27p resides mainly in Lipid Droplets (LDs) in respiratory competent cells, while in absence of respiration, is found mostly in the ER.

The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis

The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex. This CSN includes a conserved enzymatic core but lacks few subunits that participate in non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S.

Fob1p recruits DNA topoisomerase I to ribosomal genes locus and contributes to its transcriptional silencing maintenance

S. cerevisiae ribosomal DNA (rDNA) locus hosts a series of highly complex regulatory machineries for RNA polymerase I, II and III transcription, DNA replication and units recombination, all acting in the Non Transcribed Spacers (NTSs) interposed between the repeated units by which it is composed. DNA topoisomerase I (Top1p) contributes, recruiting Sir2p, to the maintenance of transcriptional silencing occurring at the RNA Polymerase II cryptic promoters, located in the NTS region.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma