Asymptotic morphisms and superselection theory in the scaling limit II: analysis of some models
We introduced in a previous paper a general notion of asymptotic morphism of a given local net of observables, which allows to describe the sectors of a corresponding scaling limit net. Here, as an application, we illustrate the general framework by analyzing the Schwinger model, which features confined charges. In particular, we explicitly construct asymptotic morphisms for these sectors in restriction to the subnet generated by the derivatives of the field and momentum at time zero. As a consequence, the confined charges of the Schwinger model are in principle accessible to observation.