shared socio-economic pathways

Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling

Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, we present a fine-resolution assessment of trends in the persistence of global plant biodiversity.

Projected global loss of mammal habitat due to land-use and climate change

Human pressure on the environment is driving a global decline of biodiversity. Anticipating whether this trend can be reverted under future scenarios is key to supporting policy decisions. We used the InSiGHTS framework to model the impacts of land-use and climate change on future habitat availability for 2,827 terrestrial mammals at 15 arcmin resolution under five contrasting global scenarios based on combinations of representative concentration pathways and shared socio-economic pathways between 2015 and 2050. Mammal habitat declined globally by 5%–16% depending on the scenario.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma