SILICON PHOTONICS

Low loss Ge-on-Si waveguides operating in the 8–14 µm atmospheric transmission window

Germanium-on-silicon waveguides were modeled, fabricated and characterized at wavelengths ranging from 7.5 to 11 µm. Measured waveguide losses are below 5 dB/cm for both TE and TM polarization and reach values of ∼ 1 dB/cm for ≥ 10 µm wavelengths for the TE polarization. This work demonstrates experimentally for the first time that Ge-on-Si is a viable waveguide platform for sensing in the molecular fingerprint spectral region.

Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors

We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma