SSIM based signature of facial micro-expressions
Facial microexpressions (MEs) play a crucial role in the non verbal communication. Their automatic detection and recognition on a real video is a topic of great interest in different fields. However, the main difficulty in automatically capturing this kind of feature consists in its rapid temporal evolution, i.e. MEs occur in very few frames of video acquired by a conventional camera. In this paper a first study concerning the perceptual characteristics of ME is performed.