Stream processing

Load-Aware Shedding in Stream Processing Systems

Distributed stream processing systems are today gaining momentum as a tool to perform analytics on continuous data streams. Load shedding is a technique used to handle unpredictable spikes in the input load whenever available computing resources are not adequately provisioned. In this paper, we propose Load-Aware Shedding (LAS), a novel load shedding solution that, unlike previous works, does not rely neither on a pre-defined cost model nor on any assumption on the tuple execution duration.

Elastic Symbiotic Scaling of Operators and Resources in Stream Processing Systems

Distributed stream processing frameworks are designed to perform continuous computation on possibly unbounded data streams whose rates can change over time. Devising solutions to make such systems elastically scale is a fundamental goal to achieve desired performance and cut costs caused by resource over-provisioning. These systems can be scaled along two dimensions: the operator parallelism and the number of resources. In this paper, we show how these two dimensions, as two symbiotic entities, are independent but must mutually interact for the global benefit of the system.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma