subspace projections

Distributed signal recovery based on in-network subspace projections

We study distributed processing of subspace-constrained signals in multi-agent networks with sparse connectivity. We introduce the first optimization framework based on distributed subspace projections, aimed at minimizing a network cost function depending on the specific processing task, while imposing subspace constraints on the final solution. The proposed method hinges on (sub)gradient techniques while leveraging distributed projections as a mechanism to enforce subspace constraints in a cooperative and distributed fashion.

Distributed signal processing and optimization based on in-network subspace projections

We study distributed optimization and processing of subspace-constrained signals in multi-agent networks with sparse connectivity. We introduce the first optimization framework based on distributed subspace projections, aimed at minimizing a network cost function depending on the specific processing task, while imposing subspace constraints on the final solution. The proposed method hinges on (sub)gradient optimization techniques while leveraging distributed projections as a mechanism to enforce subspace constraints in a cooperative and distributed fashion.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma