Surface waves

Spectral analysis of organic LED emitters’ orientation in thin layers by resonant emission on dielectric stacks

Purposely tailored thin film stacks sustaining surface waves have been utilized to create a unique link between emission angle and wavelength of fluorescent dye molecules. The knowledge of the thin film stack’s properties allows us to derive the intrinsically emitted luminescence spectrum as well as to gain information about the orientation of fluorophores from angularly resolved experiments. This corresponds to replacing all the equipment necessary for polarized spectroscopy with a single smart thin film stack, potentially enabling single shot analyses in the future.

Design rules for combined label-free and fluorescence Bloch surface wave biosensors

We report on the fabrication and physical characterization of optical biosensors implementing simultaneous label-free and fluorescence detection and taking advantage of the excitation of Bloch surface waves at a photonic crystal’s truncation interface. Two types of purposely-designed one dimensional photonic crystals on molded organic substrates with micro-optics were fabricated. These feature either high or low finesse of the Bloch surface wave resonances and were tested on the same optical readout system.

Planar antenna design for omnidirectional conical radiation through cylindrical leaky waves

An annular periodic leaky-wave antenna (LWA) fed by a simple azimuth-symmetric source is designed to generate a high-gain omnidirectional conical beam pattern which scans with frequency over a wide angular range. The proposed structure is defined by a finite metallic radial strip grating printed on a grounded dielectric slab which supports an n = 0 cylindrical leaky wave (CLW) mode. The distinctive features of CLWs supported by such a truncated structure are also highlighted and discussed.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma