Parabolic orbits of 2-nilpotent elements for classical groups
We consider the conjugation-action of the Borel subgroup of the symplectic or the orthogonal group on the variety of nilpotent complex elements of nilpotency degree 2 in its Lie algebra. We translate the setup to a representation-theoretic context in the language of a symmetric quiver algebra. This makes it possible to provide a parametrization of the orbits via a combinatorial tool that we call symplectic/orthogonal oriented link patterns. We deduce information about numerology. We then generalize these classifications to standard parabolic subgroups for all classical groups.