Bio-chemical data classification by dissimilarity representation and template selection
The identification and classification of bio-chemical substances are very important tasks in chemical, biological and forensic analysis. In this work we present a new strategy to improve the accuracy of the supervised classification of this type of data obtained from different analytical techniques that combine two processes: first, a dissimilarity representation of data and second, the selection of templates for the refinement of the representative samples in each class set. In order to evaluate the performance of our proposal, a comparative study between three approaches is presented.