terahertz

Systematic design of THz leaky-wave antennas based on homogenized metasurfaces

In this paper, a systematic design of Fabry-Perot cavity antennas based on leaky waves is proposed in the THz range. The use of different topologies for the synthesis of homogenized metasurfaces shows that a specific fishnetlike unit cell is particularly suitable for the design of efficient THz radiating devices. Accurate full-wave simulations highlight the advantages and disadvantages of the proposed geometries, thoroughly considering the bounds dictated by technological constraints and the homogenization limit as well.

Terahertz Fabry-Perot cavity leaky-wave antennas

In this work we examine the recent efforts made in the design of either efficient or reconfigurable Fabry-Perot cavity leaky-wave antennas (FPC-LWAs) in the terahertz (THz) range. We start by discussing the radiating performance of an FPC-LWA consisting of a grounded dielectric slab (GDS) covered with a periodic arrangement of fishnet-like unit cells. This antenna design shows a rather high directivity at broadside, but is not capable of reshaping the pattern at fixed frequency.

Terahertz leaky-wave antennas based on metasurfaces and tunable materials

Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field.

Terahertz amplitude polynomial principle component regression for aramid-basalt hybrid composite laminate inspection

As an emerging nondestructive diagnostic and monitoring technique, terahertz time-domain spectroscopy (THz-TDS) imagery is attracting more attention. In this regard, new THz image processing algorithms based on infrared thermography (IRT) concepts are greatly needed, since most IRT imagery modalities are fast for in-line industrial inspection. However, this scenario is difficult due to some physical constraints to be reached, although this idea should be followed to avoid the loss of useful information during image processing.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma