theoretical

Fusing Self-Organized Neural Network and Keypoint Clustering for Localized Real-Time Background Subtraction

Moving object detection in video streams plays a key role in many computer vision applications. In particular, separation between background and foreground items represents a main prerequisite to carry out more complex tasks, such as object classification, vehicle tracking, and person re-identification. Despite the progress made in recent years, a main challenge of moving object detection still regards the management of dynamic aspects, including bootstrapping and illumination changes.

Stimulation strategies for tinnitus suppression in a neuron model

Tinnitus is a debilitating perception of sound in the absence of external auditory stimuli. It may have either a central or a peripheral origin in the cochlea. Experimental studies evidenced that an electrical stimulation of peripheral auditory fibers may alleviate symptoms but the underlying mechanisms are still unknown. In this work, a stochastic neuron model is used, that mimics an auditory fiber affected by tinnitus, to check the effects, in terms of firing reduction, of different kinds of electric stimulations, i.e., continuous wave signals and white Gaussian noise.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma