time-dependent coordinates

Numerical and experimental investigation of wave overtopping of barriers

We present a study of wave overtopping of barriers. The phenomenon of the wave overtopping over emerged structures is reproduced both numerically and experimentally. The numerical simulations are carried out by a numerical scheme for three-dimensional free-surface flows, which is based on the solution of the Navier-Stokes equations in a novel integral form on a time-dependent coordinate system. In the adopted numerical scheme, a novel wet-dry technique, based on the exact solution of the Riemann problem over the dry bed, is proposed.

Three-dimensional numerical simulation of the velocity fields induced by submerged breakwaters

We propose a three-dimensional numerical model for non-hydrostatic free surface flows in which the Navier-Stokes equations are expressed in integral form on a coordinate system in which the vertical coordinate is varying in time. By a time-dependent coordinate transformation, the irregular time varying physical domain is transformed into a uniform fixed computational domain, in which the equations of motion are numerically integrated by a shock-capturing scheme based on WENO reconstruction and an approximate HLL Riemann Solver.

Numerical investigation of the three-dimensional velocity fields induced by wave-structure interaction

Submerged shore-parallel breakwaters for coastal defence are a good compromise between the need to mitigate the effects of waves on the coast and the ambition to ensure the preservation of the landscape and water quality. In this work we simulate, in a fully three-dimensional form, the hydrodynamic effects induced by submerged breakwaters on incident wave trains with different wave height.

3D numerical simulation of the interaction between waves and a T-head groin structure

The aim of coastal structures for the defense from erosion is to modify the hydrodynamic fields that would naturally occur with the wave motion, to produce zones of sedimentation of solid material, and to combat the recession of the coastline. T-head groin-shaped structures are among the most adopted in coastal engineering. The assessment of the effectiveness of such structures requires hydrodynamic study of the interaction between wave motion and the structure.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma