Time series prediction

Time series prediction using random weights fuzzy neural networks

In this paper, we introduce Random Weights Fuzzy Neural Networks as a suitable tool for solving prediction problems. The generalization capability of these randomized fuzzy neural networks is exploited in order to estimate accurately the sample be predicted from a multidimensional input. The latter is obtained by applying an embedding technique to the time series, which selects only the meaningful past samples to be used for prediction. We tested the proposed approach on real-world time series pertaining to the application context of power delivery.

ADMM consensus for deep LSTM networks

In modern real-world applications, the need of using a decentralized data processing approach has progressively increased, facing complexity and handling issues. Pervasive data and ubiquitous computational capacity have enabled the proficient use of distributed implementation of machine learning algorithms, especially for forecasting problems. We provide in this paper a new, fully distributed prediction approach based on the Long Short-Term Memory deep neural network.

Introduction

A short-term load forecast is the prediction of the consumption of resources in a distribution network in the near future. The supplied resource can be of any kind, such as electricity in power grids or telephone service in telecommunication networks. An accurate forecast of the demand is of utmost importance for the planning of facilities, optimization of day-to-day operations, and an effective management of the available resources.

A combined deep learning approach for time series prediction in energy environments

In smart grids and microgrids, time series prediction is a fundamental tool for enabling intelligent energy resource management and advanced interactions between heterogeneous agents. In this work, we propose a solution to the energy forecasting problem based on two machine learning techniques: Convolutional Neural Network and Long Short-Term Memory Network. These techniques are combined with a new embedding format to appropriately feed the time series to the stacked network architecture.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma