titania

Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method

Titanium biomaterials' response has been recognized to be affected by particles size, crystal structure, and surface properties. Chemical and structural properties of these nanoparticle materials are important, but their size is the key aspect. The aim of this study is the synthesis of TiO2 nanoparticles by the sol-gel method, which is an ideal technique to prepare nanomaterials at low temperature. The heat treatment can affect the structure of the final product and consequently its biological properties.

Spinning disk reactor technology in photocatalysis: nanostructured catalysts intensified production and applications

The use of photocatalysis in environmental remediation processes has become more important in the last decade, mainly due to the notable efforts made by researchers in this field. The photocatalytic process requires a semiconductor material (photocatalyst), usually a metal oxide, which can be activated through the energy transported by ultraviolet light or visible light waves.

XPS spectra analysis of Ti2+, Ti3+ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles

TiO2-SiO2 mixed oxides have been prepared by the sol–gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma