transcriptional regulation

Microbial stress. From sensing to intracellular and population responses

We initially devised this Research Topic (RT) as a valuable initiative to collect high-quality scientific articles from the participants of the 4th European Federation of Biotechnology (EFB) Microbial Stress meeting held in Kinsale, Ireland, April 2018. The scope of the RT is based on the scientific content of that “Microbial Stress: from Systems to Molecules and back” meeting. Indeed, over 40% of the articles eventually accepted for publication were contributed by meeting participants, but notably the remaining 60% was contributed by authors that work in this field.

X-ray irradiated cultures of mouse cortical neural stem/progenitor cells recover cell viability and proliferation with dose-dependent kinetics

Exposure of the developing or adult brain to ionizing radiation (IR) can cause cognitive impairment and/
or brain cancer, by targeting neural stem/progenitor cells (NSPCs). IR effects on NSPCs include transient
cell cycle arrest, permanent cell cycle exit/differentiation, or cell death, depending on the experimental
conditions. In vivo studies suggest that brain age influences NSPC response to IR, but whether this is
due to intrinsic NSPC changes or to niche environment modifications remains unclear. Here, we describe

Saccharomyces cerevisiae rDNA as super-hub: the region where replication, transcription and recombination meet

Saccharomyces cerevisiae ribosomal DNA, the repeated region where rRNAs are synthesized by about 150 encoding units, hosts all the protein machineries responsible for the main DNA transactions such as replication, transcription and recombination. This and its repetitive nature make rDNA a unique and complex genetic locus compared to any other. All the different molecular machineries acting in this locus need to be accurately and finely controlled and coordinated and for this reason rDNA is one of the most impressive examples of highly complex molecular regulated loci.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma