Transmission conditions

A measure theoretic approach to traffic flow optimization on networks

We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective is to minimise/maximise macroscopic quantities, such as traffic volume or average speed, controlling few agents, e.g. smart traffic lights and automated cars. The measure theoretic approach allows to study in a same setting local and non-local drivers interactions and to consider the control variables as additional measures interacting with the drivers distribution.

Parabolic models for chemotaxis on weighted networks

In this article we consider the Keller-Segel model for chemotaxis on networks, both in the doubly parabolic case and in the parabolic-elliptic one. Introducing appropriate transition conditions at vertices, we prove the existence of a time global and spatially continuous solution for each of the two systems. The main tool we use in the proof of the existence result are optimal decay estimates for the fundamental solution of the heat equation on a weighted network.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma