Verticillium

Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus Verticillium

Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution.

Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss

The fungal genus Verticillium contains ten species, some of which are notorious plant pathogens causing vascular wilt diseases in host plants, while others are known as saprophytes and opportunistic plant pathogens. Whereas the genome of V. dahliae, the most notorious plant pathogen of the genus, has been well characterized, evolution and speciation of other members of the genus received little attention thus far. Here, we sequenced the genomes of the nine haploid Verticillium spp. to study evolutionary trajectories of their divergence from a last common ancestor.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma