waveguide

On-glass integrated su-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: Feasibility study on hemoglobin sensing

An optoelectronic, integrated system-on-glass for on-chip detection of biomolecules is here presented. The system’s working principle is based on the interaction, detected by a hydrogenated amorphous silicon photosensor, between a monochromatic light travelling in a SU-8 polymer optical waveguide and the biological solution under analysis. Optical simulations of the waveguide coupling to the thin-film photodiode with a specific design were carried out.

Complex Permittivity Extraction Method of a Thin Coating: Em Properties of a Graphene- Based Film on a Composite Layer

In the design of innovative nanomaterials for electromagnetic (EM) field absorption and shielding a crucial issue is the experimental characterization of the complex effective permittivity of non-uniform layered materials or electrically thin lossy layers. This paper proposes a technique to retrieve the complex relative permittivity of a thin lossy coating supported by a dielectric substrate through transmission/reflection measurements in a rectangular waveguide.

A new microwave method for on-site integrity monitoring of pipelines

In this work, an innovative system for structural health monitoring of metallic pipes is presented. The proposed system relies on exploiting the pipeline as a waveguide for the propagation of an electromagnetic (EM) signal. By analyzing the reflected signal, it is possible to assess the possible presence of anomalies or damage in the pipe.The innovative aspect of the proposed monitoring system is that the EM test signal is injected in the pipeline/waveguide through a coaxial/waveguide transition that is made on the surface of the pipe.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma