XAS

Activation of C-H bonds by a nonheme iron(iv)-oxo complex: Mechanistic evidence through a coupled EDXAS/UV-Vis multivariate analysis

The understanding of reactive processes involving organic substrates is crucial to chemical knowledge and requires multidisciplinary efforts for its advancement. Herein, we apply a combined multivariate, statistical and theoretical analysis of coupled time-resolved X-ray absorption (XAS)/UV-Vis data to obtain detailed mechanistic information for on the C-H bond activation of 9,10-dihydroanthracene (DHA) and diphenylmethane (Ph2CH2) by the nonheme FeIV-oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in CH3CN at room temperature.

Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV-Vis multivariate statistical analysis

In this work, we obtain detailed mechanistic and structural information on bimolecular chemical reactions occurring in solution on the second to millisecond time scales through the combination of a statistical, multivariate and theoretical analysis of time-resolved coupled X-ray Absorption Spectroscopy (XAS) and UV-Vis data. We apply this innovative method to investigate the sulfoxidation of p-cyanothioanisole and p-methoxythioanisole by the nonheme FeIV oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in acetonitrile at room temperature.

Direct Mechanistic Evidence for a Nonheme Complex Reaction through a Multivariate XAS Analysis

In this work, we propose a method to directly determine the mechanism of the reaction between the nonheme complex FeII(tris(2-pyridylmethyl)amine) ([FeII(TPA)(CH3CN)2]2+) and peracetic acid (AcOOH) in CH3CN, working at room temperature. A multivariate analysis is applied to the time-resolved coupled energy-dispersive X-ray absorption spectroscopy (EDXAS) reaction data, from which a set of spectral and concentration profiles for the reaction key species is derived. These "pure"extracted EDXAS spectra are then quantitatively characterized by full multiple scattering (MS) calculations.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma