xylogenesis

Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis

Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs.

Adventitious root formation and xylogenesis in Arabidopsis thaliana: new insights

The role of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene on xylogenesis is still little known, even if a xylogenic promotion by auxins has been reported. In particular, auxin/ethylene-target tissue(s), modality of the de novo xylary process, and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is instead widely known that auxins positively affect adventitious root (AR) formation, e.g. in the model plant Arabidopsis thaliana and in in vitro cultured systems of numerous species.

Jasmonic acid methyl ester induces xylogenesis and modulates auxin-induced xylary cell identity with NO Involvement

In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem.

Jasmonate and nitric oxide roles in the control of xylary cell formation and identity in Arabidopsis seedlings

In basal hypocotyls of dark-grown Arabidopsis seedlings, xylary cells may form from the pericycle as an alternative to another developmental program, i.e. adventitious roots. It is known that several hormones may induce xylogenesis, as jasmonic acid (JA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), which also affect xylary cell identity. Recent studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) have shown ET involvement in IBA induced ectopic metaxylem.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma