Adaptive data synchronization algorithm for IoT-oriented low-power wide-area networks
The Internet of Things (IoT) is by now very close to be realized, leading the world towards a new technological era where people’s lives and habits will be definitively revolutionized. Furthermore, the incoming 5G technology promises significant enhancements concerning the Quality of Service (QoS) in mobile communications. Having billions of devices simultaneously connected has opened new challenges about network management and data exchange rules that need to be tailored to the characteristics of the considered scenario. A large part of the IoT market is pointing to Low-Power Wide-Area Networks (LPWANs) representing the infrastructure for several applications having energy saving as a mandatory goal besides other aspects of QoS. In this context, we propose a low-power IoT-oriented file synchronization protocol that, by dynamically optimizing the amount of data to be transferred, limits the device level of interaction within the network, therefore extending the battery life. This protocol can be adopted with different Layer 2 technologies and provides energy savings at the IoT device level that can be exploited by different applications.