Terahertz Fabry-Perot cavity leaky-wave antennas

04 Pubblicazione in atti di convegno
Fuscaldo Walter, Tofani S., Burghignoli Paolo, Baccarelli Paolo, Galli Alessandro

In this work we examine the recent efforts made in the design of either efficient or reconfigurable Fabry-Perot cavity leaky-wave antennas (FPC-LWAs) in the terahertz (THz) range. We start by discussing the radiating performance of an FPC-LWA consisting of a grounded dielectric slab (GDS) covered with a periodic arrangement of fishnet-like unit cells. This antenna design shows a rather high directivity at broadside, but is not capable of reshaping the pattern at fixed frequency. To this purpose, an FPC-LWA, where the periodic arrangement of fishnet-like unit cell is replaced by a uniform (i.e., non-patterned) graphene sheet, is considered to exploit the tunable properties of graphene. The performance of a graphene-based FPC-LWA is analyzed and improved by covering the structure with a high-permittivity material and slightly changing the position of graphene within the substrate. The radiating properties of all the THz structures proposed in this work are evaluated through fully-analytical techniques and validated through numerical results and full-wave simulations.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma