X-ray photoelectron spectroscopy investigation of nanoporous NiO electrodes sensitized with Erythrosine B
Nanoporous NiO thin films were prepared onto FTO glass substrates by means of screen-printing and were sensitized with Erythrosine B (EryB) dye. The obtained material was electrochemically treated and characterized with ex-situ X-ray photoelectron spectroscopy in order to gain information beneficial to the application of sensitized NiO as photocathodes of p-type dye-sensitized solar cells (p-DSCs). In particular, EryB-sensitized NiO films underwent a series of electrochemical treatments in LiClO4/Acetonitrile (ACN) electrolyte devised so as to simulate possible conditions the electrode might encounter during operation in the photoelectrochemical cell. Upon potential-cycling in a range where the two NiO faradic events Ni(II)?Ni(III) and Ni(III)?Ni(IV) occur, X-ray photoelectron spectroscopy revealed that Erythrosine B dye experiences a partial detachment from the NiO surface. This detachment seems to be paralleled by the formation of stable (Ni)+(ClO4)- couples. Overall, the EryB dye displayed an acceptable electrochemical stability onto the surface of NiO electrode up to 50 cyclic voltammetries in the range -0.27÷+1.13V vs. Ag/AgCl. These results are useful for the evaluation of electrochemical stability of the dye when this is immobilized onto an electrode surface and are beneficial for a better comprehension of the degradation phenomena operating in real photoconversion device. © 2017 Elsevier B.V.