Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural convection & mixed convection

01 Pubblicazione su rivista
Goodarzi M., D'Orazio A., Keshavarzi A., Mousavi S., Karimipour A.
ISSN: 0378-4371

Nano scale method of lattice Boltzmann is developed to predict the fluid flow and heat transfer of air through the inclined lid driven 2-D cavity while a large heat source is considered inside it. Two case studies are supposed: first one is a pure natural convection at Grashof number from 400 to 4000 000 and second one is a mixed convection at Richardson number from 0.1 to 10 at various cavity inclination angles. Using LBM to simulate the constant heat flux boundary condition along the obstacle, is presented for the first time while the buoyancy forces affect the velocity components at each inclination angle; hence the collision operator of LBM and also a way to estimate the macroscopic velocities should be modified. Results are shown in the terms of streamlines and isotherms, beside the profiles of velocity, temperature and Nusselt number. It is observed that the present model of LBM is appropriately able to simulate the supposed domain. Moreover, the effects of inclination angle are more important at higher values of Richardson number.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma