The activation of miR-125a-5p/IP6K1 axis in breast cancer cells upon treatment with myo-Inositol.

04 Pubblicazione in atti di convegno
Minini Mirko, Proietti Sara, Monti Noemi, Senni Alice, Fuso Andrea, Cucina Alessandra, Bizzarri Mariano

Several studies have been performed with the aim of identifying drugs able in inhibiting Epithelial-Mesenchymal Transition (EMT), chiefly by blocking PI3K/Akt pathway. We have already demonstrated that treatment with myo-Inositol at the pharmacological dose can block EMT in breast cancer cells by downregulating PI3K/Akt and inducing changes in cytoskeletal architecture. Herewith, we investigated the mechanism of action of myo-inositol in both highly (MDA-MB-231) and low (MCF-7) invasive human breast cancer cells. After 30’ and 24h from treatment, gene expression analysis revealed a significant downregulation of Pi3k and Psen1 after 30’ in both cell lines. Psen1 downregulation was maintained in MDA-MB-231 at 24h. Likewise, we explored the modulation of Ip6k1, Dnmt3b, Isyna1 and p53. In MDA-MB-231, a strong downregulation of Ip6k1 expression was recorded at 30’ and 24h, whilst Dnmt3b was reduced only at 30’. On the contrary, in MCF-7, Ip6k1 downregulation was unexpectedly associated to the upregulation of Dnmt3b at 30’. IP6K1 is a key enzyme of inositol metabolism, inhibits ISYNA1, probably inducing de novo DNA methylation (i.e., DNMT3B). Furthermore, IP6K1 inhibition correlates with a decrease of cancer cells motility. The upregulation of Isyna1 was observed in both cell lines at 30’, together with p53. ISYNA1 activates myo-Inositol intracellular biosynthesis starting from glucose-6-phosphate. In this activation, p53 plays a key role in binding Isyna1 promoter and eventually enabling its expression. Western-blot of MDA-MB-231 confirmed that changes in gene expression were also mirrored by concurrently modifications in IP6K1 and p53 protein levels, altogether with a decrease of both MDM2 and YAP/TAZ. It is worth noting that in MCF-7, no changes were observed in protein levels. In-silico analysis was performed using TCGA miRNA-Seq data to identify differentially expressed miRNAs between normal and tumoral tissue in breast cancer patients. To further gain mechanistic insights on myo-Inositol effects, we compared these data with main differentially expressed cancer-related miRNAs in MDA-MB-231 cells after 30’ from treatment. This analysis allowed to identify two mRNAs, downregulated in tumor tissues, that were significantly increased with myo-Inositol: miR-92a-3p and miR-125a-5p. Using DIANA tools, miR-92a-3p was predicted to interact with Notch-1 and PI3K, linking it to cytoskeletal rearrangement. Moreover, a strong interaction was predicted between miR-125a-5p and IP6K1 in 3’-UTR site. Indeed, the upregulation of miR-125a-5p is usually correlated with metastasis inhibition in breast cancer. In MDA-MB-231, miR-125a-5p upregulation was maintained at 24h, while in MCF-7 was slightly upregulated at 30’ and downregulated at 24h. Our results suggest that myo-Inositol causes early changes in gene expression, probably led by miRNAs and methylation remodeling. Elucidation of the role of miR-125a-5p/IP6K1 axis will reveal strategies for molecular targeted therapies in breast cancer.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma