The Immune System in Cushing's Syndrome
Cushing's syndrome (CS), or chronic hypercortisolism, induces a variety of alterations in the immune system, often leading to severe clinical complications such as sepsis and opportunistic infections. Prolonged exposure to high levels of glucocorticoids (GC), changes in the circadian rhythm, and the comorbidities associated therewith all combine to cause profound changes in the immune profile of affected patients. While traditionally associated with generalized immune suppression, such changes actually comprise a much more complex scenario, sharing traits with chronic inflammatory disorders. Persistently increased levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF?) and adipose tissue infiltration by immune cells lead to a chronic, nonresolving, inflammatory state. The combination of low-grade inflammation and selectively impaired immune response is thought to play a major role in the pathogenesis of clinical complications of CS, including diabetes, lipodystrophy, visceral adiposity, atherosclerosis, osteoporosis, and cognitive impairment. This dysregulation also explains rebound phenomena when CS is treated, involving new clinical complications sustained by an excessive immune response and autoimmunity. The aim of this review is to summarize the available evidence on the immune system in chronic hypercortisolism, while describing the main mechanisms of immune derangement and their role in the increased mortality and morbidity seen in this complex disease. A better understanding of immune system alterations in CS could help improve risk stratification, offer novel biomarkers, and provide the basis for more tailored therapies and post-remission follow-up.