A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes

01 Pubblicazione su rivista
Guarini Maria Rosaria, Battisti Fabrizio, Chiovitti Anthea
ISSN: 2071-1050

Real estate and land management are characterised by a complex, elaborate combination of technical, regulatory and governmental factors. In Europe, Public Administrators must address the complex decision-making problems that need to be resolved, while also acting in consideration of the expectations of the different stakeholders involved in settlement transformation. In complex situations (e.g., with different aspects to be considered and multilevel actors involved), decision-making processes are often used to solve multidisciplinary and multidimensional analyses, which support the choices of those who are making the decision. Multi-Criteria Decision Analysis (MCDA) methods are included among the examination and evaluation techniques considered useful by the European Community. Such analyses and techniques are performed using methods, which aim to reach a synthesis of the various forms of input data needed to define decision-making problems of a similar complexity. Thus, one or more of the conclusions reached allow for informed, well thought-out, strategic decisions. According to the technical literature on MCDA, numerous methods are applicable in different decision-making situations, however, advice for selecting the most appropriate for the specific field of application and problem have not been thoroughly investigated. In land and real estate management, numerous queries regarding evaluations often arise. In brief, the objective of this paper is to outline a procedure with which to select the method best suited to the specific queries of evaluation, which commonly arise while addressing decision-making problems. In particular issues of land and real estate management, representing the so-called “settlement sector”. The procedure will follow a theoretical-methodological approach by formulating a taxonomy of the endogenous and exogenous variables of the multi-criteria analysis methods

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma