Exploring protandry and pupal size selection for Aedes albopictus sex separation
Background: We explored the possibility to improve male/female separation (sexing) in Aedes albopictus by selection of two strains, one toward increasing sex dimorphism and another toward increasing protandry. In the laboratory we selected and crossed small males with large females to exploit dimorphism, and early pupating males with late pupating females to exploit protandry. Results: While selection for enhanced dimorphism was not a profitable character, the selection for enhanced protandry up to F10 produced significant improvement in the time interval between male and female pupation. By collecting the pupae at 24 h from the beginning of pupation, without any sieving operation, we obtained about 28.50% of pupae (calculated in relation to the estimated initial number of first instar larvae used), vs 26.49% we had in the control strain, and, more interestingly, when checking the sex ratio of these pupae we observed a presence of females of 0.92% vs 23.02% in the control strain. We also modified our egg hatching protocol from the previous standard procedure that required keeping the eggs in the glass hatching container overnight (for about 14-16 h) to a new protocol where eggs are kept in the hatching container for 4 h in order to obtain more synchronized larvae. This was possible without any reduction in the egg hatching rate. Conclusions: In Aedes albopictus it is possible to develop hyper-protandric strains useful to produce male pupae without applying other sexing systems. This represents a considerable achievement assisting the Sterile Insect Technique application, allowing improvement of the current sexing method based on mechanical separation. More investigations are under way in order to further enhance the male productivity capacity of the strain and to determine whether the selection has any impact on the male fitness parameters.