Photocatalytic degradation of azo dye reactive violet 5 on fe-doped titania catalysts under visible light irradiation
The presence of azo dyes in textile effluents is an issue of major concern due to their potential impact on the environment and human health. In this study we investigate the photocatalytic degradation under visible light of Reactive Violet 5 (RV5), an azo dye widely used in the textile industry. A preliminary screening of different titania-based catalysts was carried out to identify the best candidate for RV5 removal. The selected catalyst was then tested in a stirred and aerated lab-scale reactor illuminated with a blue light-emitting diode (LED) source emitting in the wavelength range of 460–470 nm. The effects of pH, catalyst load, and hydrogen peroxide additions on the efficiency of dye removal were evaluated. Under the best conditions (pH 10, 3 g/L of catalyst, and 60 mM hydrogen peroxide), the dye solution was completely decolorized in about 2 h. Overall, the results obtained suggest that the proposed process may represent a suitable method for the removal of RV5 from textile effluents.