Hot corrosion resistance of laser-sealed thermal-sprayed cermet coatings

01 Pubblicazione su rivista
Baiamonte Lidia, Bartuli Cecilia, Marra Francesco, Gisario Annamaria, Pulci Giovanni
ISSN: 2079-6412

Hot corrosion affects the components of diesel engines and gas turbines working at high temperatures, in the presence of low-melting salts and oxides, such as sodium sulfate and vanadium oxide. Thermal-sprayed coatings of nickel–chromium-based alloys reinforced with ceramic phases, can improve the hot corrosion and erosion resistance of exposed metals, and a sealing thermal, post-treatment can prove effective in reducing the permeability of aggressive species. In this study, the effect of purposely-optimized high-power diode laser reprocessing on the microstructure and type II hot corrosion resistance of cermet coatings of various compositions was investigated. Three different coatings were produced by high velocity oxy-fuel and was tested in the presence of a mixture of Na2SO4 and V2O5 at 700 °C, for up to 200 h: (i) Cr3C2–25% NiCr, (ii) Cr3C2–25% CoNiCrAlY, and (iii) mullite nano–silica–60% NiCr. Results evidenced that laser sealing was not effective in modifying the mechanism, on the basis of the hot corrosion degradation but could provide a substantial increase of the surface hardness and a significant decrease of the overall coating material consumption rate (coating recession), induced by the high temperature corrosive attack.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma