Quasi-static and dynamic response of oriented strand boards based on balsa wood waste
This work presents an evaluation of the performance of Oriented Strand Boards (OSB) panels based on balsa
wood (Ochroma Pyramidale) waste agglomerated with castor oil polyurethane resin. In this study, were evaluated
OSB panels with different densities (300 kg/m3, 400 kg/m3 and 650 kg/m3), with 10mm thickness and castor oil
polyurethane resin in different contents (11% and 15%). The OSB panels were preliminary characterized by
physical and quasi-static mechanical tests to identify the class of application of this material according to the
recommendations of standard EN 300: 2002. Subsequently, the OSB panels were characterized by low velocity
impact tests. Panels with the highest density outperformed those with the lowest one in terms of peak force and
perforation energy (Ep=22.88 J). Both properties are clearly influenced by the better compaction of the particles,
as confirmed by the higher value of internal adhesion (0.46 MPa), which resulted also in better residual
flexural properties after impact, with a reduction in strength of 36% for the samples with 650 kg/m3 compared to
about 70% for the samples with the lowest density at an impact energy level equal to 50% of the respective
perforation energy.