Integration of electrowetting technology inside an all-glass microfluidic network
This paper presents a low temperature technological process able to integrate an all-glass microfluidic network with an ElectroWetting On Dielectric (EWOD) structure for the digital handling of liquids. The fluidic channels result from the wet-etching of the glass, while the electrodes necessary for the droplet movement are deposited on the bottom and top surfaces of the microfluidic structure. The bottom electrodes are produced by a selective and sequential photolithographic pattern of a stack of metals, insulation layer and hydrophobic film. The top common electrode is made by a continuous transparent conductive oxide, covered by a hydrophobic layer. Compatibility of the technological steps and mechanical robustness of the proposed device have been tested designing and fabricating a microfluidic network integrating a central chamber, with a volume of about 9 ?l, two reservoirs, two microfluidic channels and 26 EWOD electrodes. The maximum temperature reached during the device fabrication was 330°C, which is two times lower than the one used for the anodic bonding of glass-based microfluidic network.