Mutant FUS and ELAVL4 (HuD) aberrant crosstalk in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) has been genetically linked to mutations in RNA-binding proteins (RBPs), including FUS. Here, we report the RNA interactome of wild-type and mutant FUS in human motor neurons (MNs). This analysis identified a number of RNA targets. Whereas the wild-type protein preferentially binds introns, the ALS mutation causes a shift toward 3′ UTRs. Neural ELAV-like RBPs are among mutant FUS targets. As a result, ELAVL4 protein levels are increased in mutant MNs. ELAVL4 and mutant FUS interact and co-localize in cytoplasmic speckles with altered biomechanical properties. Upon oxidative stress, ELAVL4 and mutant FUS are engaged in stress granules. In the spinal cord of FUS ALS patients, ELAVL4 represents a neural-specific component of FUS-positive cytoplasmic aggregates, whereas in sporadic patients it co-localizes with phosphorylated TDP-43-positive inclusions. We propose that pathological mutations in FUS trigger an aberrant crosstalk with ELAVL4 with implications for ALS. De Santis et al. show that the mutant RNA-binding protein FUS, linked to amyotrophic lateral sclerosis (ALS), targets other RNA-binding proteins, such as ELAVL4, in human motor neurons. This triggers aberrant crosstalk between mutant FUS and ELAVL4, which is found in pathological inclusions of ALS patients’ motor neurons.