Optimization of a perfect absorber multilayer structure by genetic algorithms
Background: An increasing interest has been recently grown in the development of nearly perfect absorber materials for solar energy collectors and more in general for all the thermophotovoltaic applications. Methods: Wide angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers are here studied to develop new devices for solar thermal energy harvesting. Genetic Algorithms are introduced for searching the optimal thicknesses of the layers so to design a perfect broadband absorber in the visible range, for a wide range of angles of incidence from 0° to 50°, and for both polarizations. Results: Genetic Algorithms allow to design several optimized structures with 6, 8, and 10 layers reaching a very high average absorbance of 97%, 99% and 99.5% respectively together with a low hemispherical total emissivity (